Sets and Subsets

<u>Set</u> - A collection of objects. The specific objects within the set are called the <u>elements</u> or <u>members</u> of the set. *Capital letters* are commonly used to name sets.

Examples: Set $A = \{a, b, c, d\}$ or Set $B = \{1, 2, 3, 4\}$

<u>Set Notation</u> - Braces { } can be used to list the members of a set, with each member separated by a comma. This is called the "<u>Roster Method</u>." A description can also be used in the braces. This is called "<u>Set-builder</u>" notation.

Example: Set A: The natural numbers from 1 to 10.

Roster Method

Members of A: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Set Notation: $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Set Builder Not.: $\{x \mid x \text{ is a natural number } from 1 \text{ to } 10\}$

<u>Ellipsis</u> - Three dots (...) used within the braces to indicate that the list continues in the established pattern. This is helpful notation to use for *long lists* or *infinite lists*. If the dots come at the end of the list, they indicate that the list goes on indefinitely (i.e. an infinite set).

Examples: Set A: Lowercase letters of the English alphabet

Set Notation: $\{a, b, c, ..., z\}$

<u>Cardinality of a Set</u> – The number of *distinct* elements in a set.

Example: Set *A*: The days of the week

Members of Set A: Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday

Cardinality of Set A = n(A) = 7

<u>Equal Sets</u> – Two sets that contain exactly the same elements, regardless of the order listed or possible repetition of elements.

Example: $A = \{1, 1, 2, 3, 4\}$, $B = \{4, 3, 2, 1, 2, 3, 4, \}$.

Sets A and B are equal because they contain exactly the same elements (i.e. 1, 2, 3, & 4). This can be written as A = B.

Equivalent Sets – Two sets that contain the same number of distinct elements.

Example:

$$A = \{Football, Basketball, Baseball, Soccer\}$$
 $B = \{penny, nickel, dime, quarter\}$

Both Sets have 4 elements

$$n(A) = 4$$
 and $n(B) = 4$

A and B are Equivalent Sets, meaning n(A) = n(B).

Note: If two sets are **Equal**, they are **also Equivalent**!

Example:

$$Set A = \{a, b, c, d\}$$

Set
$$B = \{d, d, c, c, b, b, a, a\}$$

Are Sets A and B Equal?

Sets A and B have the exact same elements! $\{a, b, c, d\}$

→ Yes!

Are Sets A and B Equivalent?

Sets A and B have the exact same number of distinct elements! n(A) = n(B) = 4

→ Yes!

The Empty Set (or Null Set) – The set that contains no elements. It can be represented by either $\{ \}$ or \emptyset .

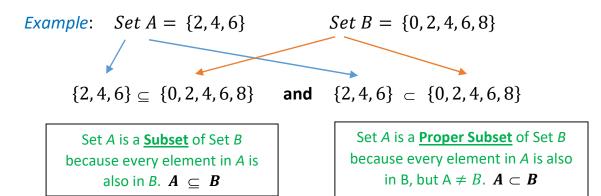
Note: Writing the empty set as $\{\emptyset\}$ is **not correct**!

Symbols commonly used with Sets -

- $\in \rightarrow$ indicates an object is an **element** of a set.
- $\notin \rightarrow$ indicates an object is **not** an element of a set.
- \subseteq \rightarrow indicates a set is a **subset** of another set.
- $\subset \rightarrow$ indicates a set is a **proper subset** of another set.
- $\cap \rightarrow$ indicates the **intersection** of sets.
- $\cup \rightarrow$ indicates the **union** of sets.

<u>Subsets</u> - For Sets A and B, Set A is a **Subset** of Set B if every element in Set A is also in Set B. It is written as $A \subseteq B$.

<u>Proper Subsets</u> - For Sets A and B, Set A is a **Proper Subset** of Set B if every element in Set A is also in Set B, **but** <u>Set A does **not** equal Set B. $(A \neq B)$ It is written as $A \subset B$.</u>



Note: The Empty Set is a Subset of every Set.

The Empty Set is also a Proper Subset of every Set <u>except</u> the Empty Set.

<u>Number of Subsets</u> – The number of distinct subsets of a set containing n elements is given by 2^n .

<u>Number of Proper Subsets</u> – The number of distinct proper subsets of a set containing n elements is given by $2^n - 1$.

Example: How many Subsets and Proper Subsets does Set A have?

Set
$$A = \{bananas, oranges, strawberries\}$$

 $n = 3$

Subsets =
$$2^n = 2^3 = 8$$
 Proper Subsets = $2^n - 1 = 7$

Example: List the **Proper Subsets** for the Example above.

- 1. {bananas} 5. {bananas, strawberries}
- 2. {oranges} 6. {oranges, strawberries}
- 3. $\{strawberries\}$ 7. \emptyset
- 4. {bananas, oranges}

<u>Intersection of Sets</u> – The Intersection of Sets A and B is the set of elements that are in both A and B, *i.e.* what they have in common. It can be written as $A \cap B$.

<u>Union of Sets</u> – The Union of Sets A and B is the set of elements that are members of Set A, Set B, or both Sets. It can be written as $A \cup B$.

Example: Find the <u>Intersection</u> and the <u>Union</u> for the Sets A and B.

 $Set A = \{Red, Blue, Green\}$

 $Set B = \{Yellow, Orange, Red, Purple, Green\}$

Set A and B only have 2 elements in common.

Intersection: $A \cap B = \{Red, Green\}$

Union: $A \cup B = \{Red, Blue, Green, Yellow, Orange, Purple\}$

List each distinct element only once, even if it appears in both Set A and Set B.

Complement of a Set - The Complement of

Set A, written as A', is the set of all elements in the given Universal Set (U), that are not in Set A.

Example: Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A = \{1, 3, 5, 7, 9\}$

Find A'.

Cross off everything in U that is also in A. What is left over will be the elements that are in A'

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

So, $A' = \{2, 4, 6, 8, 10\}$

Try these on your own!

Given the set descriptions below, answer the following questions.

 $U = All \ Integers \ from \ 1 \ to \ 10.$ $A = Odd \ Integers \ from \ 1 \ to \ 10,$ $B = Even \ Integers \ from \ 1 \ to \ 10,$ $C = Multiples \ of \ 2 \ from \ 1 \ to \ 10.$

- 2. What is the *cardinality* of Sets U and *A*?
- 3. Are Set *B* and Set *C Equal*?
- 4. Are Set A and Set C Equivalent?
- 5. How many *Proper Subsets* of Set *U* are there?
- 6. Find \mathbf{B}' and \mathbf{C}'
- 7. Find $\mathbf{A} \cup \mathbf{C}'$
- 8. Find $B' \cap C$

- $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 3, 5, 7, 9\},$
- $B = \{2, 4, 6, 8, 10\}, C = \{2, 4, 6, 8, 10\}$
 - Cardinality: $U \rightarrow 10$, $A \rightarrow 5$

Yes, they are Equal

Yes, they are Equivalent

 $2^{10} - 1 = 1023$

 $B' = C' = \{1, 3, 5, 7, 9\}$

 $A \cup C' = \{1, 3, 5, 7, 9\}$

 $B' \cap C = \{ \} \text{ or } \emptyset$