Normal Distributions and the Empirical Rule

Normal Distribution - A data set that is characterized by the following criteria -

- The Mean and Median of the distribution are equal to the Mode.
- Most data values are clustered near the Mean (or Mode) so that the distribution has a welldefined peak.
- Data values are then spread evenly around the Mean (or Mode) so that the distribution is symmetric.
- Data values become increasingly rare as you move farther to the right and to the left of the Mean. This results in tapering tales on both ends of the curve.
- The variation is characterized by the standard deviation of the data distribution.

Note - This is sometimes also referred to as a "Normal Curve" or a "Bell-Shaped Curve."

Empirical Rule - When a histogram of data is considered to meet the conditions of a "Normal Distribution", (i.e. its graph is approximately bell-shaped), then it is often possible to categorize the data using the following guidelines... (Note: $\sigma \rightarrow$ symbol used for standard deviation.)

- About 68% of the data (68.3%) is within one standard deviation ($\pm 1 \sigma$) of the mean (μ).
- About 95% of the data (95.4%) is within two standard deviations $(\pm 2 \sigma)$ of the mean (μ).
- About 99.7% of the data (all or almost all) is within three standard deviations $(\pm 3 \sigma)$ of the mean (μ).

Note - This rule is also sometimes called the "68-95-99.7 Rule."
The Empirical Rule is illustrated in the picture below.

Note: \quad The Empirical Rule implies that a data set that is normally distributed has a width of approximately 6 standard deviations (Width $\approx 6 \sigma$).

Standard Deviation - A measure of how far data values are spread around the mean of a data set. It is computed as the square root of the variance. The actual formula for calculating the standard deviation depends on whether the data represents a population or is from a sample.

Population Standard Deviation:

$$
\sigma=\sqrt{\text { population variance }}=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{n}}
$$

Sample Standard Deviation:

$$
s=\sqrt{\text { sample variance }}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

$$
\begin{gathered}
n=\# \text { of data points } \\
x_{i}=\text { individual data points } \\
\mu=\text { population mean } \\
\bar{x}=\text { sample mean }
\end{gathered}
$$

The "Range Rule of Thumb" - The standard deviation is sometimes approximated by using the range of a data distribution according to the following ...

Note: This approach works well in data sets where the values are evenly distributed and there are not any outliers.

Example - For the following data set, approximate the standard deviation using the range rule of
thumb.

8.2	8.8	9.2	10.6	12.7		
8.4	9.0	9.7	11.6	14.0		
8.5	9.2	10.4	11.8	15.9		
8.8	9.2	10.5	12.6	16.1	\quad	Highest
:---:						
data point						

Standard Deviation

$$
\begin{aligned}
\sigma & =\frac{\text { High-Low }}{4} \\
& =\frac{16.1-8.2}{4}=1.975
\end{aligned}
$$

Example - If for a certain data set, the standard deviation is $\sigma=4.5$ and the mean is $\mu=20.2$.
a. In between what two values is approx.. 68% of the data? \rightarrow Answer: $\mu \pm 1 \sigma=20.2 \pm 4.5$

$$
=15.7 \text { and } 24.7
$$

b. In between what two values is approx. 95% of the data? \rightarrow Answer: $\mu \pm 2 \sigma=20.2 \pm 2(4.5)$
$=11.2$ and 29.2
c. In between what two values is all or almost all of the data? \rightarrow Answer: $\mu \pm 3 \sigma=20.2 \pm 3(4.5)$
$=6.7$ and 33.7

