Normal Distributions and the Empirical Rule

Normal Distribution – A data set that is characterized by the following criteria –

- The *Mean* and *Median* of the distribution are equal to the *Mode*.
- Most data values are clustered near the Mean (or Mode) so that the distribution has a well-defined peak.
- Data values are then spread evenly around the Mean (or Mode) so that the distribution is *symmetric*.
- Data values become increasingly rare as you move farther to the right and to the left of the Mean. This results in tapering tales on both ends of the curve.
- The variation is characterized by the standard deviation of the data distribution.

Note - This is sometimes also referred to as a "Normal Curve" or a "Bell-Shaped Curve."

Empirical Rule - When a histogram of data is considered to meet the conditions of a "Normal Distribution", (*i.e. its graph is approximately bell-shaped*), then it is often possible to categorize the data using the following guidelines... (*Note:* $\sigma \rightarrow$ *symbol used for standard deviation.*)

- About 68% of the data (68.3%) is within one standard deviation ($\pm 1 \sigma$) of the mean (μ).
- About 95% of the data (95.4%) is within two standard deviations ($\pm 2 \sigma$) of the mean (μ).
- About 99.7% of the data (all or almost all) is within three standard deviations (±3 σ) of the mean (μ).

Note - This rule is also sometimes called the "68 – 95 – 99.7 Rule."

The Empirical Rule is illustrated in the picture below.

Note: The Empirical Rule implies that a data set that is normally distributed has a width of approximately 6 standard deviations (Width $\approx 6 \sigma$).

Standard Deviation – A measure of how far data values are spread around the mean of a data set. It is computed as the <u>square root of the variance</u>. The actual formula for calculating the standard deviation depends on whether the data represents a population or is from a sample.

Population Standard Deviation:

$$\sigma = \sqrt{population variance} = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

$$n = \# of \ data \ points$$

$$x_i = individual \ data \ points$$

$$\mu = population \ mean$$

$$\overline{x} = sample \ mean$$

The "Range Rule of Thumb" - The standard deviation is sometimes <u>approximated</u> by using the *range* of a data distribution according to the following ...

Approximately

 Image standard Deviation

$$\approx \frac{Range}{4} = \frac{High - Low}{4}$$

Note: This approach works well in data sets where the values are evenly distributed and there are not any outliers.

Example - For the following data set, approximate the standard deviation using the *range rule of thumb*.

				Lowest data point			Standard Deviation	
	8.2	8.8	9.2	10.6	12.7]	Highest data point	$\sigma = \frac{High-Low}{1}$
	8.4	9.0	9.7	11.6	14.0			0 - 4
	8.5	9.2	10.4	11.8	15.9			$=\frac{16.1-8.2}{1000}=1.975$
	8.8	9.2	10.5	12.6	16.1 🔺	-		4

Example - If for a certain data set, the standard deviation is $\sigma = 4.5$ and the mean is $\mu = 20.2$.

a. In between what two values is approx.. 68% of the data? \rightarrow Answer: $\mu \pm 1\sigma = 20.2 \pm 4.5$

= 15.7 and 24.7

b. In between what two values is approx. 95% of the data? \rightarrow Answer: $\mu \pm 2\sigma = 20.2 \pm 2(4.5)$ = 11.2 and 29.2

c. In between what two values is all or almost all of the data? \rightarrow Answer: $\mu \pm 3\sigma = 20.2 \pm 3(4.5)$ = 6.7 and 33.7