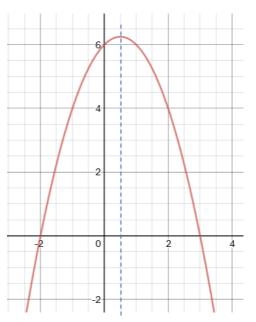
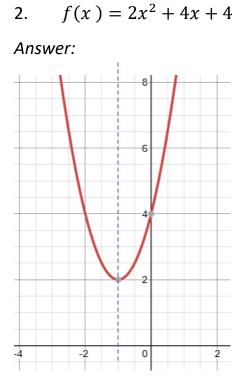

Graphing a Quadratic Function: $f(x) = ax^2 + bx + c$

Quadratic Functions are second degree polynomials (*i.e. highest power of the domain variable is 2*). Quadratics can be written in several forms - <u>General Form</u>, <u>Standard Form</u> (*also called Vertex Form*), and <u>Factored form</u>^{*}. The graph of a Quadratic Function is called a **Parabola**. It's general shape is curved and looks like a "U". The "U" is right side up if "a" is positive (a > 0), and it is upside down if "a" is negative (a < 0). The **Vertex** (h, k) is either the lowest (right side up) or the highest (upside down) point on the parabola. The **Axis of Symmetry** is a vertical line that visually cuts the parabola in half and is written as x = h.

Parabolic Graph of a Quadratic Function



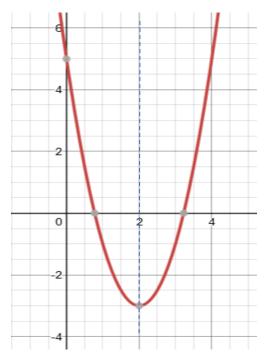
Practice Problems: Try these on your own!


Graph the following Quadratic Functions given in *General Form*. Find the Vertex, y-intercept, and x-intercept(s) if they exist. State the Domain and the Range. Also find and show the Axis of Symmetry. State whether the parabola opens *up* or *down*.

1. $f(x) = -x^2 + x + 6$

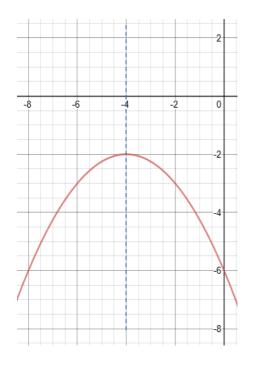
Answer:

Vertex:	$\left(\frac{1}{2},\frac{25}{4}\right)$
y-intercept:	(0,6)
x-intercept(s): $(-2, 0)$, $(3, 0)$	
Axis of Symr	metry: $x = \frac{1}{2}$
Domain:	\mathbb{R} or $(-\infty,\infty)$
Range:	$\left(-\infty,\frac{25}{4}\right]$
Opens:	Down



Vertex:	(-1,2)
y-intercept:	(0,4)
x-intercept(s): None	
Axis of Symmetry: $x = -1$	
Domain:	\mathbb{R} or $(-\infty,\infty)$
Range:	[2,∞)
Opens:	Up

Graph the following Quadratic Functions given in *Standard (Vertex) Form*. Find the Vertex, y-intercept, and x-intercept(s) if they exist. State the Domain and the Range. Also find and show the Axis of Symmetry. State whether the parabola opens *up* or *down*.


3. $f(x) = 2(x-2)^2 - 3$

Answer:

4.
$$f(x) = -\frac{1}{4}(x+4)^2 - 2$$

Answer:

Vertex: (2, -3)y-intercept: (0, 5)x-intercept(s): $\left(\frac{4+\sqrt{6}}{2}, 0\right)$, $\left(\frac{4-\sqrt{6}}{2}, 0\right)$ Axis of Symmetry: x = 2Domain: \mathbb{R} or $(-\infty, \infty)$ Range: $[-3, \infty)$ Opens: Up

Vertex: (-4, -2)y-intercept: (0, -6)x-intercept(s): *None* Axis of Symmetry: x = -4Domain: \mathbb{R} or $(-\infty, \infty)$ Range: $(-\infty, -2]$ Opens: Down