Finding the Domain of a Function

When finding the domain of a function, start with the assumption that all real numbers, $(-\infty, \infty)$ will work with the following exceptions:

- 1. If there are any fractions, the denominator(s) must NOT be equal to ZERO.
- 2. If there are any radicals with an even index, even number , then the radicand (the part under the radical MUST be set to ≥ ZERO.
- 3. The arguments of any logarithmic functions: log() or ln() MUST be > ZERO.
- 4. If there is a radical $\sqrt[even number]{}$ in the denominator, then the denominator MUST be > ZERO.

Examples:

- 1. Find the domain of $f(x) = 3x^4 5x 7$. None of the exceptions stated above apply, therefore the domain is ALL Real Numbers, $(-\infty, \infty)$.
- 2. Find domain of $g(x) = \sqrt[5]{x-7}$. None of the exceptions stated above apply, the index on the radical, namely 5, is an odd number, therefore, the domain is ALL Real Numbers, $(-\infty, \infty)$.
- 3. Find the domain of $h(x) = \frac{1}{4}x^2 x + 2$.

The only denominator in the function is the number 4 which is not equal to zero, therefore none of the exceptions apply and the answer is ALL Real Numbers, $(-\infty, \infty)$.

4. Find the domain of $k(x) = \frac{x-2}{x+3}$

Exception #1 above applies to this problem as it involves a fraction. The numerator, namely, the x-2, is not relevant to the domain of the function. Only the denominator is relevant: one must insure that x+3 is NOT equal to ZERO, therefore $x \ne -3$. Thus the answer for the domain can be written in three ways.

- a. Set-builder: $\{x | x \neq -3\}$
- b. Graphical:
- c. Interval: $(-\infty, -3) \cup (-3, \infty)$

5. Find the domain of $k(x) = \frac{x-2}{x^2-7x+12}$

Exception #1 above applies to this problem as it involves a fraction. The numerator, namely, the x-2, is not relevant to the domain of the function. Only the denominator is relevant: one must insure that $x^2 - 7x + 12$ is NOT equal to ZERO, therefore $(x-4)(x-3) \neq 0$ so $x \neq 4$, 3. Thus the answer for the domain can be written in three ways.

a. Set-builder: $\{x | x \neq 3, 4\}$

Interval: $(-\infty, 3) \cup (3, 4) \cup (4, \infty)$

6. Find the domain of $h(x) = \frac{x-7}{x^2+12}$

Since there are NO real numbers for which the denominator, $x^2 + 12 = 0$, the domain is all real numbers $(-\infty, \infty)$.

7. Find the domain of $g(x) = \sqrt[6]{4-2x}$.

Exception #2 above applies: there is a radical with an even index, namely, 6. Therefore, the radicand must be ≥ 0 .

$$4 - 2x \ge 0$$

$$\frac{-2x}{-2} \ge \frac{-4}{-2}$$
 (when dividing by a negative number in an inequality, the inequality sign must change) $x \le 2$

The final answer can be written in these ways.

- a. set builder: $\{x | x \le 2\}$
- b. graphical:
- c. interval: $(-\infty, 2]$

Finding the Domain of a Function Math 120 or Higher

When finding the domain of a function, start with the assumption that all real numbers, $(-\infty, \infty)$ will work with the following exceptions:

- 1. If there are any fractions, the denominator(s) must NOT be equal to ZERO.
- 2. If there are any radicals with an even index, even number $\sqrt{}$, then the radicald (the part under the radical MUST be set to \geq ZERO.
- 3. The arguments of any logarithmic functions: log() or ln() MUST be > ZERO.
- 4. If there is a radical $\sqrt[even number]{}$ in the denominator, then the denominator MUST be > ZERO.

Examples:

1. Find the domain of $g(x) = \log (x^2 - x - 2)$

Exception #3 applies for this problem. Therefore the argument of the log function must be > 0.

Therefore, (x-2)(x+1) > 0 critical values that would make argument equal to zero are x=2 and

$$x=-1$$

Test values

Critical points

Using test values of x=-2, x=0, and x=3 generates the following results: -2 generates a 4 which is greater than 0 so the interval $(-\infty, -1)$ works; 0 generates a -2 which is not greater than 0 so the interval (-1, 2) does not work; 3 generates a 4 which is greater than 0 so the interval $(2, \infty)$ works. The domain for g(x) is $(-\infty, -1) \cup (2, \infty)$.

2. Find the domain of $h(x) = \frac{1}{\sqrt{x+2}}$

Exception #4 applies for this problem. There is a radical in the denominator with an even index. Therefore the radicand must be > 0.

$$x + 2 > 0$$

$$x > -2$$

The final answer may be written in these ways:

- a. set builder: $\{x | x > -2\}$
- b. graphical: -2
- c. interval: $(-2, \infty)$

3. Find the domain of $g(x) = \frac{\sqrt{x-3}}{x^2+7x+10}$

Exceptions #1 and 3 apply for this problem. There is a radical in the numerator with an even index. Therefore the radicand must be ≥ 0 and the denominator cannot equal zero.

$$x-3 \ge 0$$

$$x \ge 3$$

(x+5)(x+2) The domain would be $x \ge 3$.

$$x \neq -5, -2$$

Since -5 and -2 are not in the interval $[3, \infty)$ they do not affect the domain.

The final answer may be written in these ways:

- a. set builder: $\{x | x \ge 3\}$
- b. graphical:
- c. interval: $[3, \infty)$
- 4. Find the domain of $k(x) = \frac{\sqrt{x-2}}{x-5}$

Exceptions #1 and 3 apply for this problem. There is a radical in the numerator with an even index. Therefore the radicand must be ≥ 0 and the denominator cannot equal zero.

$$x-2 \ge 0$$

$$x \ge 2$$

 $(x-5) \neq 0$ The domain would be $x \ge 2$ and $x \ne 5$

$$x \neq 5$$

Therefore the domain in interval notation would be: $[2, 5) \cup (5, \infty)$